SYDNEY GRAMMAR SCHOOL

NAME						
MATHS I	MASTE	R				
			CA	NDIDA	TE NU	IMBEF

2023 Trial Examination

Form VI Mathematics Advanced

Tuesday 8th August 2023 8:40am

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Attempt all questions.
- Write using black pen.
- Calculators approved by NESA may be used.
- A loose reference sheet is provided separate to this paper.
- Remove the central staple: you should have this cover booklet with Section I, 4 booklets for Section II, and the multiple-choice answer sheet.

Total Marks: 100

Section I (10 marks) Questions 1-10

- This section is multiple-choice. Each question is worth 1 mark.
- Record your answers on the provided answer sheet.

Section II (90 marks) Questions 11-37

- Relevant mathematical reasoning and calculations are required.
- Answer the questions in this paper in the spaces provided.
- This section is divided into four parts. Extra writing paper is provided at the end of each part.

Collection

- Your name and master should only be written on this page.
- Write your candidate number on this page, on the start of the separate section and on the multiple choice sheet.

Writer: OMD

• Place everything inside this question booklet.

Checklist

- Reference sheet
- Multiple-choice answer sheet
- Candidature: 91 pupils

	Marks
Multiple Choice	
Part A	
Part B	
Part C	
Part D	
TOTAL	

Section I

Questions in this section are multiple-choice.

Record the single best answer for each question on the provided answer sheet.

1. Which histogram best represents a dataset that is positively skewed?

(A)

(B)

(C)

(D)

- 2. What is the gradient of the line passing through A(3,0) and B(0,4)?
 - (A) $-\frac{4}{3}$
 - (B) $-\frac{3}{4}$
 - (C) $\frac{3}{4}$
 - (D) $\frac{4}{3}$

3. Which type of symmetry best describes the function sketched below?

- (A) Odd
- (B) Even
- (C) Neither
- (D) Further information required

4. Which equation best describes the quadratic function sketched below?

- (A) $y = (x+3)^2 + 2$
- (B) $y = (x+3)^2 2$
- (C) $y = (x-3)^2 + 2$
- (D) $y = (x-3)^2 2$

5. In twelve years, the future value of an investment will be \$250 000. The interest rate is 6% per annum, compounded half-yearly.

Which equation will give the present value (PV) of the investment?

(A)
$$PV = \frac{250\,000}{(1+0.06)^{24}}$$

(B)
$$PV = \frac{250\,000}{(1+0.03)^{24}}$$

(C)
$$PV = \frac{250\,000}{(1+0.06)^{12}}$$

(D)
$$PV = \frac{250\,000}{(1+0.03)^{12}}$$

- 6. Which transformations best describe the change from y = f(x) to y = -f(x+5)?
 - (A) A translation left 5 units then a reflection in the y-axis.
 - (B) A translation right 5 units then a reflection in the y-axis.
 - (C) A translation left 5 units then a reflection in the x-axis.
 - (D) A translation right 5 units then a reflection in the x-axis.

7. For the given function y = f(x) sketched below, which integral does **NOT** give the shaded area?

(A)
$$\int_a^b f(x) dx + \int_c^b f(x) dx$$

(B)
$$\int_a^b f(x) \, dx + \int_b^c f(x) \, dx$$

(C)
$$\int_a^b f(x) dx - \int_b^c f(x) dx$$

(D)
$$\int_a^b f(x) dx + \left| \int_b^c f(x) dx \right|$$

8. For the discrete random variable X, it is known that E(X) = 3 and Var(X) = 2. Which option below gives the correct expected value and variance of X + 3?

(A)
$$E(X + 3) = 3$$
 and $Var(X + 3) = 2$.

(B)
$$E(X + 3) = 6$$
 and $Var(X + 3) = 2$.

(C)
$$E(X + 3) = 3$$
 and $Var(X + 3) = 5$.

(D)
$$E(X + 3) = 6$$
 and $Var(X + 3) = 5$.

- 9. Which is a correct trigonometric identity?
 - (A) $(1 + \sec \theta) (1 \sec \theta) = \cot^2 \theta$
 - (B) $(1 + \sec \theta) (1 \sec \theta) = \tan^2 \theta$
 - (C) $(1 + \sec \theta) (1 \sec \theta) = -\cot^2 \theta$
 - (D) $(1 + \sec \theta) (1 \sec \theta) = -\tan^2 \theta$
- 10. A region in the plane is bounded by the curve $y = \frac{1}{3x}$, the x-axis, the line x = m, and the line x = 2m, where m > 0. Which description most accurately describes the area of this region?
 - (A) The area increases as m increases.
 - (B) The area decreases as m increases.
 - (C) The area increases as m decreases.
 - (D) The area is independent of m.

End of Section I

The paper continues in the next section

SYDNEY GRAMMAR SCHOOL

Question	O	ne				
$A \bigcirc$	В	\bigcirc	С	\bigcirc	D	\bigcirc
Question	\mathbf{T}	wo				
$A \bigcirc$	В	\bigcirc	С	\bigcirc	D	\bigcirc
Question	\mathbf{T}	hree)			
$A \bigcirc$	В	\bigcirc	С	\bigcirc	D	\bigcirc
Question	Fo	our				
$A \bigcirc$	В	\bigcirc	С	\bigcirc	D	\bigcirc
Question	Fi	ve				
$A \bigcirc$	В	\bigcirc	С	\bigcirc	D	\bigcirc
Question	Si	x				
$A \bigcirc$	В	\bigcirc	С	\bigcirc	D	\bigcirc
Question	Se	even	l			
$A \bigcirc$	В	\bigcirc	С	\bigcirc	D	\bigcirc
Question	Ei	ght				
$A \bigcirc$	В	\bigcirc	С	\bigcirc	D	\bigcirc
Question	N	ine				
$A \bigcirc$	В	\bigcirc	С	\bigcirc	D	\bigcirc
Question	Te	en				
$A \bigcirc$	В	\bigcirc	С	\bigcirc	D	\bigcirc

2023 Trial Examination

Form VI Mathematics Advanced

Tuesday 8th August 2023

- Fill in the circle completely.
- Each question has only one correct answer.

Trial	Examination	Δ monst	2023
111a1	Еханшанон	August	<i>202</i> 5

			A ID ID A	TE VIII	MDED
		(;A	NII)II)A		MRER

Section II

Part A

— Remember to fill in your candidate number above —

QUESTION ELEVEN (2 marks)	Marks
Find the equation of the line perpendicular to $y=2x-1$ passing through the point $A(0,-7)$.	2
QUESTION TWELVE (2 marks)	Marks
Classify each relation as one-to-one, many-to-one, one-to-many, or many-to-many.	Warks
(a) $y = 3x - 4$	1
(b) $x^2 + y^2 = 25$	1
	لثا
QUESTION THIRTEEN (1 mark)	Marks
Differentiate $f(x) = x^2(2x - 1)$.	1

QUESTION FOURTEEN (3 marks) Marks Two right-angled triangles, ABC and ADC, are shown below. 3 4.7 cm θ 2.5 cm 6 cm Calculate the size of angle θ . Give your answer correct to the nearest minute. QUESTION FIFTEEN (2 marks) Marks Suppose that $f(x) = 2x^2$ and g(x) = x - 1. (a) Find the value of g(f(4)). 1 (b) Find f(g(x)). 1

QU	JESTION SIXTEEN (2 marks)	Marks
Fin	and a formula for the n th term of the following sequences:	
(a)	$10, 12, 14, 16, \dots$	1
(b)	$\frac{1}{3},1,3,9,\dots$	1

QUESTION SEVENTEEN (2 marks)	Marks
Differentiate $y = (5x - 3)^2$.	2
QUESTION EIGHTEEN (2 marks)	Marks
The gradient function of a curve is given by $f'(x) = 2x$. Given that the curve $y = f(x)$ goes through the point $A(2, -1)$, find the equation of the curve, $y = f(x)$.	2

QUESTION NINETEEN (4 marks)

Marks

Daniel inherits $$50\,000$ and invests it in an account earning interest at a rate of 0.6% per month. Each month, immediately after the interest has been paid, Daniel withdraws \$700.

The amount in the account immediately after the nth withdrawal can be determined using the recurrence relation

$$A_n = A_{n-1}(1.006) - 700,$$

where $n = 1, 2, 3, \dots$ and $A_0 = 50000$.

	=, =, =, ··· ==== ==0	
(a)	Use the recurrence relation to find the amount of money in the account immediately after the third withdrawal.	2
(b)	Calculate the amount of interest earned in the first three months.	2

QUESTION TWENTY (4 marks)

Marks

The Jawas run a trading outpost on Tatooine. Their accountant records their monthly sales, in millions of galactic credits, listed below:

3, 4, 7, 9, 11, 12, 13, 13, 14, 20, 25.

(a)	On the graph paper below, draw a box plot to represent this data.	2
(b)	Identify any outliers in this data.	1
(c)	The Jawas claim that for 75% of the months, the amount received in sales is greater than 10 million galactic credits. Comment on this claim, justifying your answer.	1

Form	VI	Mathematics	Advanced
------	----	-------------	----------

Trial Examination August 2023

			 TE NII	
		C:A		IMRER

Section II

Part B

— Remember to fill in your candidate number above —

Qt	DESTION TWENTY-ONE (3 marks)	Marks
(a)	Find the equation of the tangent to the curve $y = e^{x+2}$ at the point $A(-2,1)$.	2
(b)	Hence find point B , where the tangent in Part (a) crosses the x -axis.	1

QUESTION TWENTY-TWO	(3 marks)	Marks
Solve the equation $9^x - 3^{x+1} = -2$,	leave your answers in exact form.	3
		•
		•
		•
		·

QUESTION TWENTY-THREE (2 marks)	Marks
Find the sum of the first 100 positive odd numbers.	2
QUESTION TWENTY-FOUR (2 marks)	Marks
Differentiate $y = \frac{x^2 + 1}{e^{2x}}$, leave your answer in simplest form.	2
e^{2x}	

QUESTION TWENTY-FIVE (4 marks)

Marks

The table shows the future value of an annuity of \$1.

Future values of an annuity of \$1

	Interest Rate per Annum					
Years	1%	2%	3%	4%		
4	4.060	4.122	4.184	4.246		
5	5.101	5.204	5.309	5.416		
6	6.152	6.308	6.468	6.633		

Harper is saving for a trip and estimates she will need \$20000. She opens an account earning 4% per annum, compounded annually.

(a)	How much does Harper need to deposit every year if she wishes to have enough money for the trip in 5 years time?	2
(b)	How much interest will Harper earn on her investment over the 5 years? Give your answer correct to the nearest dollar.	2

Qι	JESTION TWENTY-SIX (3 marks)	Marks
(a)	Find $\int e^{3-2x} dx$.	1
		•
(b)	Evaluate $\int_0^1 \frac{1}{3x+1} dx$, leave your answer in exact form.	2
		•
		•
		•
		•
		•
		•
		•

QUESTION TWENTY-SEVEN (3 marks)

Marks

Gizka have proven to be a pest throughout the galaxy due to their exponential rate of reproduction. The number, G, of gizka at a time, t, months after they were introduced to the planet of Tatooine can be calculated by the formula $G=50e^{1.2t}$.

(a)	How many gizka were first released on Tatooine?	1
(b)	Show that $\frac{dG}{dt} = 1.2G$ and hence find the rate at which the number of gizka was increasing when there were 200 gizka.	2

QU	DESTION TWENTY-EIGHT (2 marks)	Marks
(a)	Differentiate $\cos^3 x$ with respect to x .	1
(b)	Hence, or otherwise, find $\int \sin x \cos^2 x dx$.	1

Form	VI	Mat	them	atics	Ad	vanced
1 (7) 111	vi	IVIA		autos	\neg	valled

Trial	Examination	August	2023
11101	LAMIIIIIATIOII	Tugust	2020

		\sim $^{\wedge}$	VIDIDA	TE NIII	MDED

Section II

Part C

— Remember to fill in your candidate number above —

QUESTION TWENTY-NINE (5 marks)	Marks
A bowl of fruit contains 18 apples of which 11 are red and 7 are green.	
Matthew takes one apple at random and eats it. Evelyn then takes an apple and eats it.	t random
a) By drawing a probability tree diagram, or otherwise, find the probabil Matthew and Evelyn eat apples of the same colour.	ity that 3
b) Given that Matthew and Evelyn eat apples of the same colour, find the pathat they are red.	robability 2

QUESTION THIRTY (3 marks)

The curve shown in the diagram above has the equation $y = \frac{e^x \sin x}{x+2}$.

The finite region R bounded by the curve and the x-axis from x=0 to $x=\pi$ is shown shaded in the diagram above.

(a) Complete the table below with the value of y corresponding to $x = \frac{\pi}{3}$, giving your answer correct to 5 decimal places.

x	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π
\overline{y}	0		1.71761	0

(b) Use the trapezoidal rule, with all the values in the completed table, to obtain an estimate for $\int_0^\pi \frac{e^x \sin x}{x+2} \, dx$, the area of the region R. Give your answer correct to 4 decimal places.

	ESTION THIRTY-ONE (4 marks) e partial sums S_n of a geometric progression are given by $100, 190, 271, \dots$	Marks
(a)	By finding a formula for the n th term, T_n , find the value of n which gives the first term in the geometric progression smaller than 10.	3
b)	Find the limiting sum, S_{∞} , of the geometric progression.	1

QUESTION THIRTY-TWO (5 marks)

Marks

A function is defined as $f(x) = \sin\left(2x + \frac{\pi}{2}\right) + 1$, $0 \le x \le 2\pi$.

(a) Sketch y = f(x), clearly labelling any stationary points and intercepts with the axes.

(b) Hence, or otherwise, solve $\sin\left(2x + \frac{\pi}{2}\right) = 1$, $0 \le x \le 2\pi$.

	JESTION THIRTY-THREE (9 marks)	Marks
Let	$f(x) = \frac{x^2 - 1}{x^3} .$	
(a)	State the natural domain of the function.	1
(b)	Show that the function is odd.	1
It is	s given that $f'(x) = \frac{-x^2 + 3}{x^4}$.	
(c)	Show that $f''(x) = \frac{2x^2 - 12}{x^5}$.	1

${\bf QUESTION~THIRTY\text{-}THREE}~({\rm Continued})$

(d)	Find any stationary points of $f(x)$ and determine their nature.	2
	$r^2 - 1$	
(e)	Sketch the curve $y = \frac{x^2-1}{x^3}$, clearly labelling any stationary points, asymptotes, and intercepts with the axes.	4

Form	VI	Mai	the matic	S Ad	lvancec
1 (7) 111	vi	IVIA	писинали	$\sigma - \sigma u$	vallet

Trial Examination August 2023

CANDIDATE NI IMBER						

Section II

Part D

— Remember to fill in your candidate number above —

QUESTION THIRTY-FOUR (3 marks)	Marks
Solve $2\log_2(x+3) - \log_2 x = 4$.	3
	•••••

${\bf QUESTION~THIRTY\text{-}FIVE} \hspace{0.5cm} (4~{\rm marks})$

Marks

4

Given $f(x) = x^3 - x$ and $g(x) = 3x$, find the area enclosed by $y = f(x)$ and $y = g(x)$, as shown by the shaded regions in the diagram above.					
	•				
	•				
	•				
	•				
	•				
	•				
	•				

QUESTION THIRTY-SIX (6 marks)

Marks

The diatium power cell is an integral component in all light sabers. Each cell is cylindrical in shape, with a base radius x cm and height h cm, as shown in the diagram above.

(a)	Given that the volume of each cell has to be $60\mathrm{cm}^3$, show that the surface area, $A\mathrm{cm}^2$, of the cell is given by $A=2\pi x^2+\frac{120}{x}$.	

$\mathbf{QUESTION\ THIRTY\text{-}SIX\ } \ (\mathbf{Continued})$

For safety reasons it is imperative that the surface area is as low as possible. Calculate the minimum surface area, correct to 2 decimal places, and justify your answer.

 ${\bf QUESTION~THIRTY\text{-}SEVEN} \hspace{0.5cm} (5~{\rm marks}) \\$

Marks

acc the	-Katan and Din are racing with their jetpacks along a $2 \mathrm{km}$ linear course. Bo-Katan selerates at a constant $10 \mathrm{m/s^2}$ up to a top speed of $35 \mathrm{m/s}$, which she maintains until finish. Din accelerates at a constant $8 \mathrm{m/s^2}$ up to a top speed of $40 \mathrm{m/s}$, which he intains until the finish.	
(a)	Due to a technical malfunction, Din starts n seconds after Bo-Katan. Given that they both start from rest, and Din wins the race, what is the largest possible value of n ? Give your answer correct to 2 decimal places.	3

QUESTION THIRTY-SEVEN (Continued)

b)	Suppose Din and Bo-Katan start at the same point at the same time, that is $n = 0$ seconds.
	At what displacement, x , from the start of the race will they meet again?

SYDNEY GRAMMAR SCHOOL

SOLUTIONS NAME

		CA	NDIDA	TE NU	MBER

2023 Trial Examination

Form VI Mathematics Advanced

Tuesday 8th August 2023 8:40am

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Attempt all questions.
- Write using black pen.
- Calculators approved by NESA may be used.
- A loose reference sheet is provided separate to this paper.
- Remove the central staple: you should have this cover booklet with Section I, 4 booklets for Section II, and the multiple-choice answer sheet.

Total Marks: 100

Section I (10 marks) Questions 1–10

- This section is multiple-choice. Each question is worth 1 mark.
- Record your answers on the provided answer sheet.

Section II (90 marks) Questions 11-37

- Relevant mathematical reasoning and calculations are required.
- Answer the questions in this paper in the spaces provided.
- This section is divided into four parts. Extra writing paper is provided at the end of each part.

Collection

- Your name and master should only be written on this page.
- Write your candidate number on this page, on the start of the separate section and on the multiple choice sheet.

Writer: OMD

• Place everything inside this question booklet.

Checklist

- · Reference sheet
- Multiple-choice answer sheet
- Candidature: 91 pupils

Section I

Questions in this section are multiple-choice.

Record the single best answer for each question on the provided answer sheet.

1. Which histogram best represents a dataset that is positively skewed?

2. What is the gradient of the line passing through A(3,0) and B(0,4)?

- (C) $\frac{3}{4}$
- (D) $\frac{4}{3}$

3. Which type of symmetry best describes the function sketched below?

- (A) Odd (B) Even
- line symmetry 2=0
- (C) Neither
- (D) Further information required
- 4. Which equation best describes the quadratic function sketched below?

- (A) $y = (x+3)^2 + 2$
- (B) $y = (x+3)^2 2$
- (C) $y = (x-3)^2 + 2$
- (D) $y = (x-3)^2 2$
- right 3 down 2

5. In twelve years, the future value of an investment will be \$250 000. The interest rate is 6% per annum, compounded half-yearly.

Which equation will give the present value (PV) of the investment?

(A)
$$PV = \frac{250\,000}{(1+0.06)^{24}}$$

(B)
$$PV = \frac{250\,000}{(1+0.03)^{24}}$$

(C)
$$PV = \frac{250\,000}{(1+0.06)^{12}}$$

(D)
$$PV = \frac{250\,000}{(1+0.03)^{12}}$$

half-yearly
$$12 \text{ yrs} \times 2 = 24 \text{ half years}$$

$$6\% \text{ po annon}$$

$$\frac{6\%}{2} = 3\% \text{ per half year}$$

- 6. Which transformations best describe the change from y = f(x) to y = -f(x+5)?
 - (A) A translation left 5 units then a reflection in the y-axis.
 - (B) A translation right 5 units then a reflection in the y-axis.
 - (C) A translation left 5 units then a reflection in the x-axis.
 - (D) A translation right 5 units then a reflection in the x-axis.

7. For the given function y = f(x) sketched below which integral does **NOT** give the shaded area?

(A)
$$\int_{a}^{b} f(x) dx + \int_{c}^{b} f(x) dx$$

$$(B) \int_a^b f(x) \, dx + \int_b^c f(x) \, dx$$

(C)
$$\int_a^b f(x) dx - \int_b^c f(x) dx$$

(D)
$$\int_a^b f(x) dx + \left| \int_b^c f(x) dx \right|$$

8. For the random variable X, it is known that E(X) = 3 and Var(X) = 2. Which option below gives the correct expected value and variance of X + 3?

(A)
$$E(X + 3) = 3$$
 and $Var(X + 3) = 2$.

(B)
$$E(X + 3) = 6$$
 and $Var(X + 3) = 2$.

(C)
$$E(X+3)=3$$
 and $Var(X+3)=5$.

(D)
$$E(X + 3) = 6$$
 and $Var(X + 3) = 5$.

$$E(aX+b) = aE(X)+b$$

$$Var(aX+b) = a^{2}Var(X)$$

$$Var(aX+b) = a^2 Var(X)$$

9. Which is a correct trigonometric identity?

(A)
$$(1 + \sec \theta) (1 - \sec \theta) = \cot^2 \theta$$

(B)
$$(1 + \sec \theta) (1 - \sec \theta) = \tan^2 \theta$$

$$(\underline{\mathbf{C}}) \ (1 + \sec \theta) (1 - \sec \theta) = -\cot^2 \theta$$

$$(D) + \sec \theta (1 - \sec \theta) = -\tan^2 \theta$$

$$\sin^2\theta + \cos^2\theta = 1$$

 $\tan^2\theta + 1 = \sec^2\theta$
 $1 - \sec^2\theta = -\tan^2\theta$
 $(1 + \sec\theta)(1 - \sec\theta) = -\tan^2\theta$

- 10. A region in the plane is bounded by the curve $y = \frac{1}{3x}$, the x-axis, the line x = m, and the line x = 2m, where m > 0. Which description most accurately describes the area of this region?
 - (A) The area increases as m increases.
 - (B) The area decreases as m increases.
 - $(\underline{\mathbf{C}})$ The area increases as m decreases.
 - (D) The area is independent of m.

$$\frac{1}{3}\int_{-\infty}^{2\pi} \frac{1}{2} dx$$

$$= \frac{1}{3} \left[\ln x \right]_{-\infty}^{2\pi}$$

$$= \frac{1}{3} \left(\ln 2\pi - \ln x \right)$$

$$= \frac{1}{3} \ln 2\pi$$

$$= \frac{1}{3} \ln 2$$

End of Section I

The paper continues in the next section

QUESTION ELEVEN (2 marks)

Marks

Find the equation of the line perpendicular to y = 2x - 1 passing through the point A(0,-7).

QUESTION TWELVE (2 marks)

Marks

1

Classify each relation as one-to-one, many-to-one, one-to-many, or many-to-many.

(b)
$$x^2 + y^2 = 25$$

QUESTION THIRTEEN (1 mark)

Marks

Differentiate $f(x) = x^2(2x - 1)$.

QUESTION FOURTEEN (3 marks)

Marks

3

Two right-angled triangles, ABC and ADC, are shown below.

Calculate the size of angle θ . Give your answer correct to the nearest minute.

6 cm

QUESTION FIFTEEN (2 marks)

Marks

Suppose that $f(x) = 2x^2$ and g(x) = x - 1.

(a) Find the value of g(f(4)).

1

1

(b) Find f(g(x)).

QUESTION SIXTEEN (2 marks)

Marks

Find a formula for the nth term of the following sequences:

(a) 10, 12, 14, 16, ...

1

(b) $\frac{1}{3}$, 1, 3, 9, ...

1

G.P.	T, = a	r^-1 a	= \frac{1}{3}	r = 3
		$\times 3^{-1}$	ccept	
		3^-2	•	

Differentiate $y = (5x - 3)^2$. $y = (5x - 3)^2$	Marks
$y' = 2 \times 5 \times (5x - 3)$	
y' = 10(5x - 3)	
QUESTION EIGHTEEN (2 marks)	Marks
The gradient function of a curve is given by $f'(x) = 2x$. Given that the curve $y = f(x)$ goes through the point $A(2,-1)$, find the equation of the curve, $y = f(x)$.	2
$f(x) = x^2 + C$	
$-1 = 2^2 + C$	
-1 = 4 +C	
c = -5	
$f(x) = x^2 - 5$	

QUESTION NINETEEN (4 marks)

Marks

Daniel inherits $$50\,000$ and invests it in an account earning interest at a rate of 0.6% per month. Each month, immediately after the interest has been paid, Daniel withdraws \$700.

The amount in the account immediately after the nth withdrawal can be determined using the recurrence relation

$$A_n = A_{n-1}(1.006) - 700,$$

where $n = 1, 2, 3, \dots$ and $A_0 = 50000$.

(a) Use the recurrence relation to find the amount of money in the account immediately after the third withdrawal.

2

 $A_{1} = 50000 (1.006) - 700$ = 49600

 $A_2 = 49600 (1.006) - 700$ = 49197.6

A, =49197.6(1.006) - 700 =\$48792.79

(b) Calculate the amount of interest earned in the first three months.

2

QUESTION TWENTY (4 marks)

Marks

The Jawas run a trading outpost on Tatooine. Their accountant records their monthly sales, in millions of galactic credits, listed below:

3, 4, 7, 9, 11, 12, 13, 13, 14, 20, 25.

(a) On the graph paper below, draw a box plot to represent this data.

2

.....

(b) Identify any outliers in this data.

1

= / -5.5 -: no outliers at bottom

Upper = 14 + 7 × 1.5 = 24.5

.. 25 82110

(c) The Jawas claim that for 75% of the months, the amount received in sales is greater than 10 million galactic credits. Comment on this claim, justifying your answer.

This claim is folse. 75% of the months are above the lower quartile (Q1) which is 7 million galactic credits.

or 7 million galactic credity

QUESTION TWENTY-ONE (3 marks)

Marks

1

(a) Find the equation of the tangent to the curve $y = e^{x+2}$ at the point A(-2,1).

 $y' = e^{\alpha+2}$

when x = -2 $y' = e^{-2+2}$ $y' = e^{-2+2}$ y = -2+2 $y' = e^{-2+2}$ y = -2+3 y' = 1

(b) Hence find point B, where the tangent in Part (a) crosses the x-axis.

when y=0 6=x+3x=-3Accept

$\mathbf{QUESTION} \ \mathbf{TWENTY-TWO} \hspace{0.5cm} (3 \ \mathrm{marks})$

Marks

Solve the equation $9^x - 3^{x+1} = -2$, leave your answers in exact form.

3

$$(3^x)^2 - 3(3^x) + 2 = 0$$

$$y^2 - 3y + 2 = 0$$

forms quadratic

$$y=1$$
 $y=1$ $y=1$ $y=1$

$$x = \log_{2} 2 \qquad x = 0$$

$$= 0.6309$$

QUESTION TWENTY-THREE (2 marks)

Marks

Find the sum of the first 100 positive odd numbers.

2

A.P.
$$a=1$$
 $d=2$ $n=100$

$$S_{1\infty} = \frac{100}{2} \left[2x1 + (100 - 1)x2 \right]$$

	N N		
•••••		 	

Marks

Differentiate $y = \frac{x^2 + 1}{e^{2x}}$, leave your answer in simplest form.

$$y = u \qquad u = x^2 + 1 \qquad v = e^{2x}$$

$$v' = 2x \qquad v' = 2e^{2x}$$

$$y' = Vu' - uv'$$

$$= 2xe^{2x} - 2e^{x}(x^{2} + 1)$$

$$= e^{4x}$$

$$= \frac{2x - 2(x^2 + 1)}{e^{2x}}$$

$$= \frac{2x - 2x^2 - 2}{e^{2x}}$$

.....

QUESTION TWENTY-FIVE (4 marks)

Marks

The table shows the future value of an annuity of \$1.

Future values of an annuity of \$1

, .					
	Interest Rate per Annum				
Years	1%	2%	3%	4%	
4	4.060	4.122	4.184	4.246	
5	5.101	5.204	5.309	5.416	
6	6.152	6.308	6.468	6.633	

Harper is saving for a trip and estimates she will need \$20000. She opens an account earning 4% per annum, compounded annually.

(a) How much does Harper need to deposit every year if she wishes to have enough money for the trip in 5 years time?

 $FV. = 20000 \div (5.416)$ allow = \$3692.76 ECF

(b) How much interest will Harper earn on her investment over the 5 years? Give your answer correct to the nearest dollar.

 $1 = 20000 - 5 \times 3692.76$

=\$1536 / allow ECF

QUESTION TWENTY-SIX (3 marks)

Marks

1

(a) Find $\int e^{3-2x} dx$.

QUESTION TWENTY-SEVEN (3 marks)

Marks

Gizka have proven to be a pest throughout the galaxy due to their exponential rate of reproduction. The number, G, of gizka at a time, t, months after they were introduced to the planet of Tatooine can be calculated by the formula $G = 50e^{1.2t}$.

(a) How many gizka were first released on Tatooine?

(b) Show that $\frac{dG}{dt} = 1.2G$ and hence find the rate at which the number of gizka was increasing when there were 200 gizka.

2

QUESTION TWENTY-EIGHT (2 marks)

Marks

(a) Differentiate $\cos^3 x$ with respect to x.

 $y = \cos^3 x$ $= u^3$ $\frac{dy}{dx} = 3u^2$ $\frac{dy}{dx} = 3u^2$

 $\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{du}{dx}$

(b) Hence, or otherwise, find $\int \sin x \cos^2 x \, dx$.

 $-\frac{1}{3}\int_{-3}^{-3}\sin \alpha \cos^{2} x \, dx$ $= -\frac{1}{3}\cos^{3} x + C$

QUESTION TWENTY-NINE (5 marks)

Marks

A bowl of fruit contains 18 apples of which 11 are red and 7 are green.

Matthew takes one apple at random and eats it. Evelyn then takes an apple at random and eats it.

(a) By drawing a probability tree diagram, or otherwise, find the probability that Matthew and Evelyn eat apples of the same colour.

 $= \frac{11}{18} \times \frac{10}{17} + \frac{7}{18} \times \frac{6}{17} \quad P(44)$

= 76 allow ft from incorrect 153 tree diagram.

(b) Given that Matthew and Evelyn eat apples of the same colour, find the probability that they are red.

P(RR | SAME) = P(RR) P(SAME)

 $= 55 \div 76$ $= 153 \cdot 153$

= <u>55</u> 76

QUESTION THIRTY (3 marks)

Marks

The curve shown in the diagram above has the equation $y = \frac{e^x \sin x}{x+2}$.

The finite region R bounded by the curve and the x-axis from x=0 to $x=\pi$ is shown shaded in the diagram above.

(a) Complete the table below with the value of y corresponding to $x = \frac{\pi}{3}$, giving your answer correct to 5 decimal places.

	004			
x	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π
y	0	0.80988	1.71761	0

(b) Use the trapezoidal rule, with all the values in the completed table, to obtain an estimate for $\int_0^\pi \frac{e^x \sin x}{x+2} dx$, the area of the region R. Give your answer correct to 4 decimal places.

$$R = \frac{\pi - 0}{2 \times 3} \left[0 + 0 + 2 \left(0.80988 + 1.71761 \right) \right]$$

= 2.646784199 with unrounded value of $f(\Xi)$ = 2.646781339 with rounded value of $f(\Xi)$

= 1.8166 (4dp.)

QUESTION THIRTY-ONE (4 marks)

Marks

1

The partial sums S_n of a geometric progression are given by $100, 190, 271, \ldots$

(a) By finding a formula for the nth term, T_n , find the value of n which gives the first term in the geometric progression smaller than 10.

 $T_1 = 100$ G.P. a = 100 r = 0.9 $T_2 = 190 - 100$ $T_3 = 100 \times 0.9^{-1}$ = 90

 $T_3 = 271 - 190$ 10×0.9^{-1} 0.1×0.9^{-1}

log(0.1) > (n-1) log(0.4)

log(0.1) < n-1

log(0.9)

(b) Find the limiting sum, S_{∞} , of the geometric progression.

 $S_{s} = \frac{100}{1-0.9}$

QUESTION THIRTY-TWO (5 marks)

Marks

A function is defined as $f(x) = \sin\left(2x + \frac{\pi}{2}\right) + 1$, $0 \le x \le 2\pi$.

(a) Sketch y = f(x), clearly labelling any stationary points and intercepts with the axes.

6R $\frac{1}{2}(x) = \sin\left(\frac{\pi}{2} - \left(-2x\right)\right) + 1$ = cos (-2x)+|

= cos(2x)+1 (b) Hence, or otherwise, solve $\sin\left(2x+\frac{\pi}{2}\right)=1$, $0 \le x \le 2\pi$. $0 \le 2x \le 4\pi$ $\frac{\pi}{2} \le 2x + \frac{\pi}{2} \le \frac{4\pi}{2}$

 $\sin\left(2x+\frac{\pi}{2}\right)=1 \qquad (+1)$

$$2z+\frac{\pi}{2}=s:z^{-1}$$

 $sin(2z+\frac{\pi}{2})+1=2$ = $\frac{\pi}{2}$, $\frac{5\pi}{2}$, $\frac{9\pi}{2}$

: where graph $f(x) = 2 / 2x = 0, 2\pi, 4\pi$

graphical solution

02 algebraic solution

QUESTION THIRTY-THREE (9 marks)

Marks

Let $f(x) = \frac{x^2 - 1}{x^3}$.

(a) State the natural domain of the function.

1

(b) Show that the function is odd.

1

$$-\int_{-\infty}^{\infty} (x) = \int_{-\infty}^{\infty} (-\infty) \cdot = -\infty^{2}$$

It is given that $f'(x) = \frac{-x^2 + 3}{x^4}$.

(c) Show that $f''(x) = \frac{2x^2 - 12}{x^5}$.

1

$$f'(x) = -x^{-2} + 3x^{-4}$$

QUESTION THIRTY-THREE (Continued)

(e) Sketch the curve $y = \frac{x^2 - 1}{x^3}$, clearly labelling any stationary points, asymptotes, and $\boxed{4}$

as
$$x \rightarrow \infty$$

$$y \rightarrow 0^{\dagger}$$

QUESTION THIRTY-FOUR (3 marks)	Mark
Solve $2\log_2(x+3) - \log_2 x = 4$.	3
Solve $2\log_2(x+3) - \log_2 x = 4$. $\log_2(x+3)^2 = 4$	
$\left(x+3\right)^2 = 2^4$	
æ	
$(x+3)^2 = 16x$	
(x+3) = $(62$	
$x^2 + 6x + 9 = 16x$	
$x^2 - 10x + 9 = 0$	
(x - 9)(x - 1) = 0	
x=q or $x=1$	

QUESTION THIRTY-FIVE (4 marks)

Marks

Given $f(x) = x^3 - x$ and g(x) = 3x, find the area enclosed by y = f(x) and y = g(x), as shown by the shaded regions in the diagram above.

intersect when f(x) = g(x) $x^3 - x = 3x$ $x^3 - 4x = 0$ $x(x^2 - 4) = 0$ $x(x^2 - 4) = 0$ x(x + 2)(x - 2) = 0 $x = -2 \quad x = 2$ both functions odd: $A = 2 \int_0^2 3x - (x^3 - x) dx$ $= 2 \int_0^2 4x - x^3 dx$ $= 2 \left[2x^2 - x^4 \right]_0^2$ $= 2 \left[8 - 4 \right] - 0$

QUESTION THIRTY-SIX (6 marks)

Marks

2

The diatium power cell is an integral component in all light sabers. Each cell is cylindrical in shape, with a base radius x cm and height h cm, as shown in the diagram above.

(a) Given that the volume of each cell has to be $60\,\mathrm{cm}^3$, show that the surface area, $A\,\mathrm{cm}^2$, of the cell is given by $A=2\pi x^2+\frac{120}{x}$.

 $\sqrt{\frac{1}{2}} = \pi r^2 \sqrt{\frac{1}{2}}$

h = 60 πx^2

 $A = 2\pi r^2 + 2\pi rh$

 $= 2\pi x^2 + 2\pi x \times 60$

 $A = 2\pi x^{2} + 120$ As required.

QUESTION THIRTY-SIX (Continued)

(b) For safety reasons it is imperative that the surface area is as low as possible. Calculate the minimum surface area, correct to 2 decimal places, and justify your answer.

$$A = 2\pi x^{2} + 120x^{-1}$$

S,p, w	Lere	AL	= 0

120 4 11

QUESTION THIRTY-SEVEN (5 marks)

Marks

Bo-Katan and Din are racing with their jetpacks along a 2km linear course. Bo-Katan accelerates at a constant $10\,\mathrm{m/s^2}$ up to a top speed of $35\,\mathrm{m/s}$, which she maintains until the finish. Din accelerates at a constant $8 \,\mathrm{m/s^2}$ up to a top speed of $40 \,\mathrm{m/s}$, which he maintains until the finish.

(a) Due to a technical malfunction, Din starts n seconds after Bo-Katan. Given that they 3 both start from rest, and Din wins the race, what is the largest possible value of n? Give your answer correct to 2 decimal places.

Bo-Katan	$\frac{35}{10} = 3.5$	Dia	40 = 5
a = 10		a = 8	Ost < 5
V = 10t+c,	0 < t < 3.5	$v = 8t + c_4$	Ost < 5
start from rest ci-	- 0	start from rest	c, =0
v = 10t		v = 8t	Ost < 5
$x = 5t^2 + c_2$		$x = 4t^2 + c$	•
start from origin	C ₃ =0	start from a	origin C5 = 0
$x = 5t^2$	0 \ t \ 3.5	x = 4 t2	Ost < 5
v = 35		40	F_ +

= 35t - 1225 + 61.25 =

35t -61.25 /

= 58.89

6.39 s

Alternate geometric approach bolow...

QUESTION THIRTY-SEVEN (Continued)

(b) Suppose Din and Bo-Katan start at the same point at the same time, that is n=0 seconds.

At what displacement, x, from the start of the race will they meet again?

Extra writing space (Use this space only for questions in Part D)

If you use this space, clearly indicate which question you are answering.

$$A_1 = \frac{3.5 \times 35}{2}$$
 $A_3 = \frac{5 \times 40}{2}$

$$A_2 = 2000 - 61.25 \qquad A_4 = 2000 - 100$$

$$= 1938.76 \qquad = 1900$$

$$x = 1938.75$$
 $y = 1900$
 35 40
 $= 55.39$ $y = 47.5$

$$t = 58.89 - 52.5$$

= $6.39s$